Mujat, Mircea; Patel, Ankit; Maguluri, Gopi; Iftimia, Nicusor V.; Akula, James D.; Fulton, Anne B.; Ferguson, R D.
ARVO 2016 - Advancement in OCT, May 1-5, 2016, Seattle, WA
Purpose: To demonstrate a new dual-conjugate, dual-band approach to whole eye optical biometry. The flexibility and utility of such a system for wide-field measurements and diagnostics far exceeding axial lengths and thicknesses, and IOL power calculations is anticipated to make it commercially viable in many research and clinical applications.
…
Methods: That system was based upon an ellipsoidal optical scanning/imaging design that produces near-normal incidence scans over large patches of the eye’s surface for efficient profiling and corneal/scleral surface stitching. This method permits simultaneous imaging of pairs of ocular surfaces with respect to the scan pivot point (the system pupil), by integration of dual-conjugate optics. Coordinated dual-reference arms enable ranging to these two focal surfaces at precisely known locations with respect to the scan pivot, and to each other, on a single SDOCT spectrometer without imposing extreme requirements on the axial imaging range. Direct imaging of the eye through the reflective scan optics allows the system pupil/pivot location to be precisely positioned by the operator, while the eye’s position and orientation are monitored by a camera and controlled by a fixation display. Results: The method has been initially demonstrated with a single imaging system by changing the beam focus and the scanning pivoting point and measuring various eye surfaces sequentially. Typical results for large area scans of cornea, iris and top of lens, and retina are shown in Fig. 1. Conclusions: Our preliminary corneal/scleral, lenticular and retinal imaging demonstrations (performed at safe light levels for retinal imaging under NEIRB human subjects protocols) have shown coordinated optical delays and focal conjugate zoom control produce high quality SDOCT images ranging throughout the whole eye. Simultaneous measurement of anterior and posterior ocular anatomic structures and surfaces, and their precise spatial relationship to each other over wide angles, is feasible with a two-channel, dual-conjugate non-contact optical ocular biometry system in the optically accessible regions of the eye.
Cost-Effective Manufacturing of Compact TDLAS Sensors for Hazardous Area Applications
Michael B. Frish, Matthew C. Laderer, Clinton J. Smith, Ryan Ehid, and Joseph Dallas
SPIE Photonics West, San Francisco, CA, February 13-18, 2016
Tunable Diode Laser Absorption Spectroscopy (TDLAS) is finding ever increasing utility for industrial process measurement and control. The technique’s sensitivity and selectivity benefit continuous concentration measurements of specific gas components in complex gas mixtures which are often laden with liquids or solid particulates.
…
Tradeoff options among optical path length, absorption linestrength, linewidth, cross-interferences, and sampling methodology enable sensor designers to optimize detection for specific applications. Emerging applications are demanding increasing numbers of distributed miniaturized sensors at diminishing costs. In these applications, the TDLAS specificity is a key attribute, and its high sensitivity enables novel sampling package designs with short optical pathlengths. This paper describes a miniature hermetically-sealed backscatter TDLAS transceiver package designed for high-volume production at acceptable cost. Occupying a volume less than 1in3 and weighing less than 0.06 lb, the transceiver is a key component of TDLAS sensors intended for in-situ measurements of potentially explosive gas mixtures.
Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study
Nicusor Iftimia, Gary Peterson, Ernest W. Chang, Gopi Maguluri, William Fox, and Milind Rajadhyaksha
Journal of Biomedical Optics 21(1), 016006 (January 2016)
We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins.
…
While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ∼1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ∼7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ∼600 μm, and agreement with histology was within about 50 μm.
Copyright 2016 Society of Photo Optical Instrumentation Engineers (SPIE). This paper appeared in the Journal of Biomedical Optics 21(1), [DOI: 10.1117/1.JBO.21.1.016006] (January 2016). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.